THE GAUSS MAP OF A THREE-DIMENSIONAL MINIMAL SURFACE

HAROLD R. PARKS

1. Introduction

It is well known that the Gauss map of a connected two-dimensional minimal submanifold of \mathbb{R}^3 either is an open map or its image is just one point. This is based on the connection between two-dimensional minimal surfaces and analytic functions. It is natural to wonder to what extent the above result can be generalized to a connected three-dimensional minimal submanifold M of \mathbb{R}^4 . Consideration of simple examples leads to the following conjecture: Either M is a portion of a cartesian product (of a two-dimensional minimal surface and a line) or a portion of a cone or the Gauss map of M is open. We will show this conjecture to be false.

The method of this paper is to derive, using an estimate from [6] and the assumed truth of the conjecture, certain conclusions about two-dimensional surfaces of least area. Specifically, we conclude that there is an oriented surface of least area T with boundary R, where R is as in §5(3), such that T is invariant under the transformation

$$(x, y, z) \rightarrow (-y, x, -z).$$

It is shown in §7 that no such T can exist. Thus the conjecture cannot be true. We state the conjecture in a more convenient form. Let $\Omega \subset \mathbb{R}^n$ $(n \ge 2)$ be a connected open set. Suppose $f: \Omega \to \mathbb{R}$ is of class 2 and satisfies the minimal surface equation. Define the Gauss map $\zeta: \Omega \to \mathbb{S}^n$ by requiring, for each $x \in \Omega$.

(i)
$$\zeta(x) \cdot (\mathbf{e}_i + D_i f(x) \mathbf{e}_{n+1}) = 0$$
, $i = 1, 2, 3, \dots, n$,

(ii) $\zeta(x) \cdot \mathbf{e}_{n+1} > 0$;

throughout this paper, $e_1, e_2, e_3, \dots, e_{n+1}$ will be the standard basis for \mathbb{R}^{n+1} .

Communicated by J. J. Kohn, October 19, 1979.

 OM_n : Either we have

$$\zeta(\Omega) \subset \zeta(\Omega \sim K)$$

for each compact $K \subset \Omega$ or ζ is an open map.

Thus OM_2 is true and we will show OM_3 can fail to hold. Notice that whenever the graph of f is a portion of a cartesian product or a portion of a cone, then we have

$$\zeta(\Omega) \subset \zeta(\Omega \sim K)$$

for each compact $K \subset \Omega$.

2. Preliminaries

Except when otherwise stated, we will follow the notation and terminology of [1].

(1) Let n denote an integer $(n \ge 2)$ and Ω a bounded open uniformly convex subset of \mathbb{R}^n . Set

$$\Gamma = \text{Bdry } \Omega, \quad \Gamma_0 = \partial(\mathbf{E}^n \mathsf{L}\Omega).$$

(2) For each lipschitzian u: Clos $\Omega \to \mathbf{R}$ we write

$$\mathbf{G}[u] = \int_{\Omega} |Du| d\mathcal{L}^n,$$

$$\mathbf{A}[u] = \int_{\Omega} (1 + |Du|^2)^{1/2} d\mathcal{C}^n.$$

- (3) For each lipschitzian $\phi: \Gamma \to \mathbf{R}$ we denote by $\mathfrak{B}(\phi)$ the set of lipschitzian $u: \operatorname{Clos} \Omega \to \mathbf{R}$ such that $u|\Gamma = \phi$.
- (4) For use in the next proposition, fix $\phi_0: \Gamma \to \mathbb{R}$ which satisfies the bounded slope condition (see [5, Definition 1.1]) and $u_0 \in \mathfrak{B}(\phi_0)$ with

$$\mathbf{G}[u_0] = \inf\{\mathbf{G}[u] \colon u \in \mathfrak{B}(\phi_0)\}\$$

 $(u_0 \text{ exists by } [6, 3(2)]).$

(i) Set

$$T_r = \Gamma_0 \sqcup \{x : \phi_0(x) > r\} - \partial (\mathbb{E}^n \sqcup \{x : u_0(x) > r\}),$$

for $a = \inf\{u_0(x) : x \in \Omega\} < r < b = \sup\{u_0(x) : x \in \Omega\}.$

(ii) For each lipschitzian $v: \operatorname{Clos} \Omega \to \mathbf{R}$ define

$$U_n$$
: Clos $\Omega \to \mathbb{R}$, N_n : Clos $\Omega \to \Lambda^1(\mathbb{R}^n)$

as in [6, 4(2)].

- **3. Proposition.** Suppose $||Du_0(x)|| > 0$ holds for \mathbb{C}^n almost every $x \in \text{Clos } \Omega$.
 - (1) For $v \in \mathcal{B}(\phi_0)$, $\mathbf{G}[v] = \mathbf{G}[u_0]$ implies $v = u_0$.
 - (2) Let $\omega \in \mathbf{O}(n)$ be such that
 - (i) $\omega(\Omega) = \Omega$,
 - (ii) $\omega_{t}\mathbf{E}^{n} = -\mathbf{E}^{n}$,
 - (iii) $-\phi_0 \circ \omega(x) = \phi_0(x)$ for $x \in \Gamma$.

If $\mathfrak{I}^{n-1}[\Gamma \cap \phi_0^{-1}(0)] = 0$ holds, then we have $\omega_{\sharp}T_0 = T_0$.

Proof. (1) Suppose $v \in \mathfrak{B}(\phi_0)$ satisfies $G[v] = G[u_0]$. By [6, 10(1)] we have

$$\int_a^b \int_{u_0^{-1}(r)} |N_v(x)| d\Im \mathcal{C}_x^{n-1} d\mathcal{L}_r^1 = 0.$$

Applying [6, 5, 8(2)] we obtain

$$\int_{a}^{b} \int ||\vec{T}_{r}(x) L D(v - u_{0})(x)||d||T_{r}||_{x} d\mathcal{L}_{r}^{1} = 0.$$

By [6, 7(1)] we see that [2, 2] is applicable for \mathcal{C}^1 almost every r, so we have

$$\int_{a}^{b} \int |v - u_0| d \|T_r\|_{x} d \mathcal{L}_r^1 = 0.$$

Conclusion (1) now follows by applying [6, 5] and [1, 3.2.12].

(2) Using (1) we obtain

$$-u_0 \circ \omega(x) = u_0(x)$$
 for $x \in \text{Clos } \Omega$.

Noting also $\omega_{\sharp}\Gamma_0 = -\Gamma_0$, we compute

$$\omega_{\sharp} T_0 = \partial (\mathbf{E}^n \sqcup \{x : u_0(x) \le 0\}) - \Gamma_0 \sqcup \{x : \phi_0(x) \le 0\},$$

and hence

$$T_0 - \omega_t T_0 = \Gamma_0 \sqcup \{x : \phi_0(x) = 0\} - \partial (\mathbf{E}^n \sqcup \{x : u_0(x) = 0\}).$$

Conclusion (2) now follows from [1, 2.9.11].

4. Lemma. Let f_1, f_2, f_3, \cdots be a sequence of class 2 functions on $U \subset \mathbb{R}^n$ (U open) which converge uniformly on compact subsets of U to the lipschitzian function f. If there is d > 0 such that $|Df_k(x)| \ge d$ holds for each $x \in U$ and each $k = 1, 2, 3, \cdots$, then $|Df(x)| \ge d$ holds for \mathbb{C}^n almost every $x \in U$.

Proof. Fix $x \in U$ and $\varepsilon > 0$ so that Df(x) exists and $\mathbf{B}(x, \varepsilon) \subset U$. By solving the initial value problem

$$\langle \mathbf{e}_1, Du(t) \rangle = \operatorname{grad} f_k(u(t)), u(0) = x,$$

we see easily that there exists $y_k \in \mathbf{B}(x, \varepsilon)$ with $f_k(y_k) - f_k(x) \ge d\varepsilon$, for $k = 1, 2, 3, \cdots$. It follows that there exists $z \in \mathbf{B}(x, \varepsilon)$ with $f(z) - f(x) \ge d\varepsilon$. Since $\varepsilon > 0$ can be chosen arbitrarily small, we have $|Df(x)| \ge d$.

5. Notation

(1) Set

$$x(r, \phi, \theta) = (r \sin \phi \cos \theta, r \sin \phi \sin \theta, r \cos \phi),$$

$$v(\phi, \theta) = (-\cos \phi \cos \theta, -\cos \phi \sin \theta, \sin \phi).$$

- (2) For use in the next proposition, fix 0 < d, $0 < \phi_0 < \pi/2$, $F: \mathbf{S}^2 \to \mathbf{R}$ of class 3, and affine functions $A_+, A_-: \mathbf{R}^3 \to \mathbf{R}$. Suppose
 - (i) If $\phi_0 \le \phi \le \pi \phi_0$ holds, then we have, for each $0 \le \theta \le 2\pi$,

$$\langle v(\phi, \theta), DF[x(1, \phi, \theta)] \rangle \ge d,$$

(ii)
$$DA_{+} = DA_{-}$$
, $\langle \mathbf{e}_{3}, DA_{+} \rangle \geqslant d$, and $\langle \mathbf{e}_{1}, DA_{+} \rangle = \langle \mathbf{e}_{2}, DA_{+} \rangle = 0$,

- (iii) $A_{-}(x) \le F(x) \le A_{+}(x)$, for each $x \in \mathbf{S}^2$,
- (iv) $F|U_{+} = A_{+}|U_{+}$ and $F|U_{-} = A_{-}|U_{-}$, where

$$U_{+} = \{ x(1, \phi, \theta) : 0 \le \phi \le \phi_{0} \},$$

$$U_{-} = \{ x(1, \phi, \theta) : \pi - \phi_{0} \le \phi \le \pi \}.$$

(3) For each $\theta \in \mathbf{R}$, define $f_{\theta} \colon \mathbf{R} \to \mathbf{R}^3$ by setting $f_{\theta}(\phi) = x(1, \phi, \theta)$.

Put

$$R = R_0 - R_{\pi/2} + R_{\pi} - R_{3\pi/2},$$

where

$$R_{\theta} = f_{\theta\sharp} [0, \pi].$$

(4) Define τ , μ , $\sigma \in \mathbf{O}(3)$ by setting

$$\tau(x, y, z) = (x, y, -z),$$

$$\mu(x, y, z) = (-y, x, z),$$

$$\sigma(x, y, z) = (y, x, z),$$

for each $(x, y, z) \in \mathbb{R}^3$. Note that $(\mu \circ \tau)_{t} \mathbb{E}^3 = -\mathbb{E}^3$.

- **6.** Proposition. Suppose OM_3 holds.
- (1) Let $f \in \mathfrak{B}(F)$ satisfy

$$A\lceil f\rceil = \inf\{A\lceil u\rceil \colon u \in \mathfrak{B}(F)\}.$$

Then $|Df(x)| \ge d$ holds for each $x \in U(0, 1)$.

(2) Let $g \in \mathfrak{B}(F)$ satisfy

$$\mathbf{G}[g] = \inf \{ \mathbf{G}[u] \colon u \in \mathfrak{B}(F) \}.$$

Then $|Dg(x)| \ge d$ holds for \mathbb{C}^3 almost every $x \in U(0, 1)$.

Proof. (1) The Gauss map ζ : U(0, 1) \rightarrow S³ defined in §1 extends continuously to B(0, 1) (see [4, Lemma 4]). We write $\mathbf{R}^4 = \mathbf{R}^3 \times \mathbf{R}$ and set $\xi = \rho \circ \zeta$, where ρ is projection on the first factor. Using the planes defined by A_+ and A_- as barriers (§5(2iii), §5(2iv), and [5, Lemma 2.2]), we see that

$$D_3 f[x(1, \phi, \theta)] \ge d$$

holds for $0 \le \phi \le \phi_0$ and $\pi - \phi_0 \le \phi \le \pi$. Combining this with §5(2i), we easily see that

(*)
$$|\xi(x)| \ge d/(1+d^2)^{1/2}$$

holds for $x \in S^2$. This implies by OM_3 that (*) holds for $x \in \mathbf{B}(0, 1)$, because, as is easily checked, for $x \in S^2$, if $\mathbf{e}_1 \cdot \xi(x) = \mathbf{e}_2 \cdot \xi(x) = 0$ holds, then $\mathbf{e}_3 \cdot \xi(x) < 0$ holds. The condition (*) clearly implies $|Df(x)| \ge d$.

(2) For
$$k = 1, 2, 3, \cdots$$
 define $F_k : \mathbf{S}^2 \to \mathbf{R}$ by setting

$$F_k(x) = kF(x).$$

The conditions of §5(2) hold for F_k with d, A_+ , A_- replaced by kd, kA_+ , kA_- , respectively. Let $f_k \in \mathfrak{B}(F_k)$ satisfy

$$\mathbf{A}[f_k] = \inf \{ \mathbf{A}[u] \colon u \in \mathfrak{B}(F_k) \},\,$$

and set $g_k = k^{-1}f_k$. By [5, Propositions 3.1 and 6.2] we have $\text{Lip}(g_k) \leq M$ (M independent of k), and by (1) we have $|Dg_k(x)| \geq d$ for each $x \in U(0, 1)$. By the Ascoli Theorem, the proof of [6, 3(2)], and Lemma 4, we obtain $g \in \mathfrak{B}(F)$ such that

$$G[g] = \inf\{G[u]: u \in \mathfrak{B}(F)\},\$$

and $|Dg(x)| \ge d$ holds for \mathbb{C}^3 almost every $x \in U(0, 1)$. Conclusion (2) now follows from Proposition 3(1).

7. Proposition. There exists no absolutely area minimizing $T \in \mathfrak{R}_2(\mathbb{R}^3)$ with $\partial T = R$ and

$$T = (\mu \circ \tau)_{\sharp} T.$$

Proof. Suppose such a T exists. Set

$$\begin{split} T_k &= T \cup \big\{ x(r, \phi, \theta) \colon 0 < r \leqslant 1, \, 0 < \phi < \pi, \\ 2^{-1}(k-1)\pi \leqslant \theta < 2^{-1}k\pi \big\}, \quad k = 1, 2, 3, 4, \\ W_1 &= \partial T_1 \cup \big\{ (x, y, z) \colon y = 0 \big\}, \\ W_2 &= \partial T_1 \cup \big\{ (x, y, z) \colon x = 0, y > 0 \big\}, \\ W_3 &= \partial T_1 \cup \big\{ (x, y, z) \colon x = y = 0 \big\}, \\ W_4 &= \partial T_1 - W_3. \end{split}$$

Using [1, 4.1.15], we obtain

$$(\mu \circ \tau)_{\sharp}(W_1 + W_2) + (\mu \circ \tau \circ \mu^2)_{\sharp}(W_1 + W_2)$$

= $(\sigma \circ \tau)_{\sharp}(W_1 + W_2) + (\sigma \circ \tau \circ \mu^2)_{\sharp}(W_1 + W_2).$

From this we see that

$$T' = T_1 + (\sigma \circ \tau)_{\sharp} T_1 + T_3 + (\sigma \circ \tau)_{\sharp} T_3$$

is absolutely area minimizing and satisfies $\partial T' = R$. We compute

$$\partial T' = 2 W_3 + 2 (\sigma \circ \tau)_{\sharp} W_3 + W_4 + (\sigma \circ \tau)_{\sharp} W_4 + \mu^2_{\sharp} W_4 + (\sigma \circ \tau \circ \mu^2)_{\sharp} W_4.$$

Consequently, we have

$$W_3 + (\sigma \circ \tau)_{\sharp} W_3 = 0,$$

and thus $\partial T'' = R_0 - R_{\pi/2}$ where

$$T'' = T' \cup \{(x, y, z) : y > -x\} = T_1 + (\sigma \circ \tau)_{\sharp} T_1.$$

Note that T'' is absolutely area minimizing.

There is but one absolutely area minimizing $Q \in \mathfrak{R}_2(\mathbf{R}^3)$ with $\partial Q = R_0 - R_{\pi/2}$ (see [3, p. 1063]); further, $\Theta^2(\|Q\|, x) = 1$ holds for $\|Q\|$ almost all $x \in \mathbf{R}^3$, spt $Q \sim$ spt ∂Q is diffeomorphic to a connected open subset of \mathbf{R}^2 , and we have

$$spt Q \cap \{(x, y, z) : xy = 0\} \subset spt(R_0 - R_{\pi/2}).$$

We conclude that spt $T_1 \subset \operatorname{spt} Q$, since $\mathbf{M}[T''] = \mathbf{M}[T_1] + \mathbf{M}[(\sigma \circ \tau)_{\sharp} T_1]$ holds; hence we have

$$\operatorname{spt} \partial T_1 \subset \operatorname{spt} (R_0 - R_{\pi/2}),$$

and, by the constancy theorem (see [1, 4.1.7]), $T_1 = lQ$ for some integer l. This contradicts $\partial T'' = R_0 - R_{\pi/2}$.

- **8. Lemma.** Fix $0 < d_1 < 2^{-1}$ and $0 < \phi_0 < 2^{-1}\pi$. There exists a function $f(a, \phi)$, defined and of class ∞ for $\phi_0 < a < \pi \phi_0$ and $-\infty < \phi < \infty$, satisfying
 - (i) $-f(\pi-a,\pi-\phi)=f(a,\phi),$
 - (ii) $0 \leqslant \phi \leqslant \phi_0 \text{ implies } f(a, \phi) = 1 d_1 + d_1 \cos \phi,$
 - (iii) $\pi \phi_0 \leqslant \phi \leqslant \pi \text{ implies } f(a, \phi) = -1 + d_1 + d_1 \cos \phi,$
 - (iv) $-1 + d_1 + d_1 \cos \phi \le f(a, \phi)$

$$\leq 1 - d_1 + d_1 \cos \phi$$
, for $0 \leq \phi \leq \pi$,

$$(v) f(a, a) = 0,$$

(vi)
$$D_2 f(a, \phi) \le -d_1 \sin \phi$$
, for $\phi_0 \le \phi \le \pi - \phi_0$.

Proof. Construction of such a function is routine.

9. Theorem. OM_3 can fail.

Proof. We suppose OM_3 is valid. Let $\varepsilon > 0$ be arbitrary. Choose $\nu: \mathbb{R} \to \mathbb{R}$ of class ∞ so that

$$0 < \inf\{\nu(\theta): \theta \in \mathbf{R}\}, \nu(\theta + \pi/2) = \pi - \nu(\theta),$$

$$\mathcal{F}_{\mathbf{B}(0, 1)}(R - \nu^*_{\sharp}[0, 2\pi]) < \varepsilon,$$

where $\nu^*(\theta) = x(1, \nu(\theta), \theta)$. Applying Lemma 8, with $\phi_0 < \inf{\{\nu(\theta): \theta \in \mathbb{R}\}}$, we define $F: \mathbb{S}^2 \to \mathbb{R}$ by setting

$$F[x(1, \phi, \theta)] = f[\nu(\theta), \phi]$$

for $0 \le \phi \le \pi$ and $0 \le \theta \le 2\pi$. One checks easily that F satisfies the conditions of §5(2) (with $d = d_1 \sin \phi_0$). Let $u \in \mathfrak{B}(F)$ satisfy

$$\mathbf{G}[u] = \inf \{ \mathbf{G}[v] \colon v \in \mathfrak{B}(F) \}.$$

By Proposition 6(2), Proposition 3 is applicable to u, so, replacing ω in Proposition 3(2) by $\mu \circ \tau$ and ϕ_0 by F, we have $(\mu \circ \tau)_{\sharp} T = T$, where

$$T = [\partial(\mathbf{E}^{3} \sqcup \mathbf{U}(0, 1))] \sqcup \{ x \colon F(x) \ge 0 \} - \partial(\mathbf{E}^{3} \sqcup \{ x \colon u(x) \ge 0 \}).$$

By [6, 7(1)], $T \in \Re_2(\mathbf{R}^3)$ is absolutely area minimizing. Clearly,

$$\partial T = \nu^*_{\sharp} [0, 2\pi]$$
 and $M[T] \le 4\pi$

hold. Since $\varepsilon > 0$ was arbitrary, the compactness theorem (see [1, 4.2.17]) leads to a contradiction of Proposition 7.

References

- [1] H. Federer, Geometric measure theory, Springer, New York, 1969.
- [2] _____, A minimizing property of extremal submanifolds, Arch. Rational Mech. Anal. 59 (1975) 207-217.
- [3] W. Fleming, An example in the problem of least area, Proc. Amer. Math. Soc. 7 (1956) 1063-1074.
- [4] H. Jenkins & J. Serrin, The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math. 229 (1968) 170-187.
- [5] M. Miranda, Un teorema di esistenza e unicità per il problema dell'area minima in n variabili, Ann. Scuola Norm. Sup. Pisa, Ser. III, 19 (1965) 233-249.
- [6] H. Parks, Explicit determination of area minimizing hypersurfaces, Duke Math. J. 44 (1977) 519-534.

BROWN UNIVERSITY